On bipartite Q-polynomial distance-regular graphs

نویسنده

  • Stefko Miklavic
چکیده

Let Γ denote a bipartite Q-polynomial distance-regular graph with vertex set X, diameter d ≥ 3 and valency k ≥ 3. Let RX denote the vector space over R consisting of column vectors with entries in R and rows indexed by X. For z ∈ X, let ẑ denote the vector in RX with a 1 in the z-coordinate, and 0 in all other coordinates. Fix x, y ∈ X such that ∂(x, y) = 2, where ∂ denotes path-length distance. For 0 ≤ i, j ≤ d we define wij = ∑ ẑ, where the sum is over all z ∈ X such that ∂(x, z) = i and ∂(y, z) = j. We define W = span{wij | 0 ≤ i, j ≤ d}. In this paper we consider the space MW = span{mw | m ∈ M,w ∈ W}, where M is the Bose-Mesner algebra of Γ. We observe MW is the minimal A-invariant subspace of RX which contains W , where A is the adjacency matrix of Γ. We display a basis for MW that is orthogonal with respect to the dot product. We give the action of A on this basis. We show that the dimension of MW is 3d− 3 if Γ is 2-homogeneous, 3d − 1 if Γ is the antipodal quotient of the 2d-cube, and 4d − 4 otherwise. We obtain our main result using Terwilliger’s “balanced set” characterization of the Q-polynomial property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bipartite Q-Polynomial Distance-Regular Graphs with Diameter 9, 10, or 11

Let Γ denote a bipartite distance-regular graph with diameter D. In [J. S. Caughman, Bipartite Q-polynomial distance-regular graphs, Graphs Combin. 20 (2004), 47–57], Caughman showed that if D > 12, then Γ is Q-polynomial if and only if one of the following (i)-(iv) holds: (i) Γ is the ordinary 2D-cycle, (ii) Γ is the Hamming cube H(D, 2), (iii) Γ is the antipodal quotient of the Hamming cube H...

متن کامل

Some new constructions of imprimitive cometric association schemes

In a recent paper [9], the authors introduced the extended Q-bipartite double of an almost dual bipartite cometric association scheme. Since the association schemes arising from linked systems of symmetric designs are almost dual bipartite, this gives rise to a new infinite family of 4-class cometric schemes which are both Q-bipartite and Q-antipodal. These schemes, the schemes arising from lin...

متن کامل

The Parameters of Bipartite Q-polynomial Distance-Regular Graphs

Let denote a bipartite distance-regular graph with diameter D ≥ 3 and valency k ≥ 3. Suppose θ0, θ1, . . . , θD is a Q-polynomial ordering of the eigenvalues of . This sequence is known to satisfy the recurrence θi−1 − βθi + θi+1 = 0 (0 < i < D), for some real scalar β. Let q denote a complex scalar such that q + q−1 = β. Bannai and Ito have conjectured that q is real if the diameter D is suffi...

متن کامل

Bipartite distance-regular graphs and the Q-polynomial property; the combinatorial meaning of q

These problems are inspired by a careful study of the papers of concerning bipartite distance-regular graphs. Throughout these notes we let Γ = (X, R) denote a bipartite distance-regular graph with diameter D ≥ 3 and standard module V = C X. We fix a vertex x ∈ X and let E denote the corresponding dual primitive idempotents. We define the matrices R = D i=0 E * i+1 AE * i , L= D i=0 E * i−1 AE ...

متن کامل

A ug 2 00 5 Almost - bipartite distance - regular graphs with the Q - polynomial property ∗

Let Γ denote a Q-polynomial distance-regular graph with diameter D ≥ 4. Assume that the intersection numbers of Γ satisfy ai = 0 for 0 ≤ i ≤ D − 1 and aD 6= 0. We show that Γ is a polygon, a folded cube, or an Odd graph.

متن کامل

Almost-bipartite distance-regular graphs with the Q-polynomial property

Let Γ denote a Q-polynomial distance-regular graph with diameter D ≥ 4. Assume that the intersection numbers of Γ satisfy ai = 0 for 0 ≤ i ≤ D − 1 and aD 6= 0. We show that Γ is a polygon, a folded cube, or an Odd graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2007